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Off-equilibrium generalization of the fluctuation dissipation theorem for Ising spins and
measurement of the linear response function
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We derive for Ising spins an off-equilibrium generalization of the fluctuation dissipation theorem, which is
formally identical to the one previously obtained for soft spins with Langevin dynali€s Cugliandolo, J.
Kurchan, and G. Parisi, J. Phys4] 1641(1994)]. The result is quite general and holds both for dynamics with
conserved and nonconserved order parameters. On the basis of this fluctuation dissipation relation, we con-
struct an efficient numerical algorithm for the computation of the linear response function without imposing the
perturbing field, which is alternative to those of Chatel@inPhys. A36, 10 739(2003] and Ricci-Tersenghi
[Phys. Rev. E68, 065104R) (2003 ]. As applications of the new algorithm, we present very accurate data for
the linear response function of the Ising chain, with conserved and nonconserved order parameter dynamics,
finding that in both cases the structure is the same with a very simple physical interpretation. We also compute
the integrated response function of the two-dimensional Ising model, confirming that it obeys scaling
x(t,t,) =t,2f(t/t,), with a=0.26+0.01, as previously found with a different method.
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I. INTRODUCTION 2TR(t,t) = (p(X, 1) p(X, 1)), (3

In the recent big effort devoted to the understanding ofwhereT is the temperature of the thermal bath assit’ by
systems out of equilibrium, of particular interest is the prob-causality. It is straightforwarfll] to recast the above relation
lem of the generalization of the fluctuation dissipation theo4n the form

rem (FDT). The autocorrelation functio€(t—t’) of some
( ) ( ) }aC(t,t’) _}aC(t,t’)

local observable and the corresponding linear response func- TRt = —ALL), (4)
tion R(t—t’) in equilibrium are related by the FDT 2 ot 2 a
where
1oC(t-t'
R(t—t’):—g. (1) , 1 - -, - o,
T & ALE) = SHAX DB(AX,1)) = (BAX, D) p(X,1'))]
The question is whether an analogous relation also exists 5

away from equilibrium, name_ly, whether it is_ still possible t0 s the so-called asymmetry. Equatie$ [or (3)] qualifies as
connect the response function to properties of the Unpely, exiension of the FDT out of equilibrium, since in the
turbed dynamics, possibly in the form of correlation func-yignt hand side unperturbed correlation functions appear and,
tions. _ , _ _when time translation and time inversion invariance holds,
A p_osr[_lve answer to thls question e_>X|sts when the_ timereduces to the equilibrium FD{). In Appendix A we show
evolution is of the Langevin type. Consider a system with any ¢ this equation holds in the same form both for conserved
order parameter fielgh(X) evolving with the equation of mo- order parametefCOP and nonconserved order parameter

tion (NCOP dynamics.
The next interesting question is whether one can do the
AP(X,1) . R same also in the case of discrete spin variables, where there
P B(o(X,0)) + n(X,), (2) s no stochastic differential equation and, therefore, (Bljis

not available. For spin variables governed by a master equa-
tion, this problem has been considered in recent papers by
Chatelain [2], Ricci-Tersenghi[3], Diezemann[4], and
isanti and Ritort[5]. However, although important for
computational and analytical calculations, their results, as we
shall explain below, cannot be regarded as generalizations of
the FDT in the sense of E@4). In Refs.[2,3], a scheme is
presented wherR(t,t’) is related to unperturbed correlation

where B(¢(X,t)) is the deterministic force ang(x,t) is a
white, zero-mean Gaussian noise. Then, the linear respon
function is simply given by the correlation function of the
order parameter with the noise

*Email address: lippiello@sa.infn.it functions which, however, are not computed in thee dy-
"Email address: corberi@sa.infn.it namics of the system. Rather, as will be clarified in Sec. 1V,
*Email address: zannetti@na.infn.it these correlation functions are computed through an auxil-
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iary dynamical rule, instrumental to the construction of an  p([s],t + At|[s'],t) = Ssi[s'] +w([s']— [s])At + O(At?),
algorithm for the computation dR(t,t’). On the other hand,
in Refs.[4,5], R(t,t') is related to quantities that can be ©)
extracted from the dynamics of the unperturbed system, bygnere we have used the boundary conditisifs],t|[s'],t)
not all of them can be put in the form of correlation func- = &g Normalization of the probability implies
tions. ’

Instead, we have succeeded in deriving for Ising spin sys- Ty
tems a genuine off equilibrium generalization of the FDT, 2 w(ls]—[s'D =0. (10
which takes exactly the same form as E@H.and (5) and (]
which holds, as in the Langevin case, for NCGRin flip)  Furthermore, the transition rates must verify detailed balance
and COR(spin exchangedynamics. Furthermore, using this
result we have derived an efficient numerical method for thew([s] — [s'])exp(— H[s]/T) =w([s'] — [s])exp(— H[s')/T),
computation of the response function, without imposing the (11)
perturbing conjugate field, which is alternative to those of

Refs.[2,3]. whereH[s] is the Hamiltonian of the system. In the follow-

The paper is organized as follows. In Sec. Il we introducg,, \ve separate explicitly the diagonal from the off-diagonal
the formalism and derive the off equilibrium FDT. In Sec. llI cogntributi(?ns mw([sl]aH [g]) g g

we introduce the dynamics in discrete time in order to de-
velop a numerical algorithm based on the fluctuation dissi-
pation relation. Section IV is devoted to a comparative dis-
cussion of our method with those of Chatelain and Ricci-
Tersenghi. In Sec. V the algorithm is applied to the +(1 - g gpW(s] —[s']), (12
investigation of the scaling properties of the response func-
tion in the one dimensional Ising model with NC@8ec. where we have used EL0).
V A) and COP dynamicéSec. V B. As a further application Introducing the perturbing field as an extra tef[s]
of the method we study in Sec. VI the integrated response —sjh; in the Hamiltonian, to linear order inthe most gen-
function of the Ising model ird=2. In Sec. VIl we make eral form of the perturbed transition rateg'([s]—[s'])
concluding remarks. compatible with the detailed balance condition(see Ap-
pendix B

w(s] = [s]) =~ dgre1 2 W(s]—[s])
[s"]#[s]

II. FLUCTUATION DISSIPATION RELATION
FOR ISING SPINS 1
: : : : wh([s] — [s']) =w’([s] = [s'])) 1 - —hy(s; - §))
We consider a system of Ising spiss=+1 executing a 2T
Markovian stochastic process. The problem is to compute the
linear response; j(t,t') on the spin at the siteand at the + M([s],[s’])}, (13
timet, due to an impulse of external field at an earlier tirhe

and at the sitg. Let whereM([s],[s']) is an arbitrary function of orden/T sym-

hi() =h& ot —t) ot’ + At—t) (6)  metric with respect to the exchangs]«[s'] and w°([s]

L _ _ ) ) _ —[s']) are unspecified unperturbed transition rates, which
be the magnetic field on thgh site acting during the time satisfy detailed balance. Note that, since Ed) reduces to
interval [t’,t" +At], V\_/herea |s_the_ Heavyside step function. an identity for[s]#[s'], Eq. (13 does not hold for the di-
The response function then is given k5] agonal contributionw([s]—[s]) which, in turn, can be ob-

L As () tained by the normalization conditid¥yw"([s]—[s'])=0.
Rj(tt)= lim - ah () (7) " In the following, for simplicity, we will takeM([s],[s'])=0
) and the role of a different choice favi([s],[s']) will be
where discussed in Sec. IV.
Using Egs.(9), (12), and(13) we obtain

1
h=0

Xs(t)
o = 2 sp(sltst + Ay
&hj(t) h=0  [s][s'1[s"] | T aph([S],t+At|[S/],t)
| ST + ALY o(€10) o, h=0
i ' 1
& "0 =Atdgre; 2 WISl [SD(s-8)

=
(8) 2190218

and([s] are spin configurations.

Let us concentrate on the factor containing the conditional
probability in the presence of the external figh([s'],t’
+At|[s"],t’). In general, the conditional probability fakt and inserting this result in E@8), the response function can
sufficiently small is given by be written as the sum of two contributiof,7]

1
+At(1- 5[5],[5'])5\/\'0([5] —[s'D(s-s) (14
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TR (tt) = lim [TD,(t,t',At) + TD,(t,t',AD], (15)
At—0
where the first term comes from the diagonal part of @¢)

1
Oyt AD =2 > sp(sLt[s']t" +At)
[sls"]
x 2 W(s'T—[$N(s - )p(sLt),
[s"1#[s']
(16)

whereasai,j takes all the off-diagonal contributions
— 1
D (Lt A) == >
[s][s'][s"]#[s']
xwi(s"]—[s'Dp(s"]t").

sp(sLt[s' Tt + At)(s] - 5)

17)

Using the time translational invariance of the conditional

probability p([s],t|[s'],t’+At)=p([s],t—-At|[s'],t'), one
can writeD; ;(t,t", At) in the form of a correlation function

TD;(t,t",At) :—%@(t—At)Bj(t’)), (18)

where

By =~ 2 (5,—S)W([s] — [']).

[s"]

(19

Using Egs.(9) and(12) the off-diagonal contribution can be

written as
— 1AG (t,t)
D, i(t,t',At) = =——"—~ 20
i ) > At (20)
where

AC;(tt) =(s(t[si(t" + At) = 5(t)])
= 2 e S8 ~SIP(SLIS T + At
xp([s'].t" + Atl[s"],t)p(s"],t). (21)

Therefore, putting together Eq4.8) and(20) and taking the
limit At— 0 we obtain

14C;(tt)

1
TRt =2—% 5<S(t)|3j(t’)>- (22)

In order to bring this into the form of Eq$4) and (5), we
notice that from Eqs(9) and (12) follows
d(si(1) -3 dp(sl.t)
dt g7 dt

== > swi(s] — [$Dp(s]y
[s] [¢"1%[s]

+ 2 sw(s']—[shp(s']b).
[sl[s']#[s]

Hence, after the change of variableg—[s"],[s']—[s] in
the second sum, one obtains

(23)

PHYSICAL REVIEW E 71, 036104(2009

dsW_ s 3 (s~ sHWA([s] — ['Dp((s].b)

dt [s] [s1)#[s]
=(B;(1)). (24)
In a similar way, it is straightforward to derive
aC;;(t,t) )
—"’r - (Bi()si(t"))=0 (25
and subtracting this from Eq22) we finally find
10C;;(t,t")  10C;;(t,t")
TR(t,t") == — -=-— -A(Lt), (26
R,J( ’ ) 2 at, 2 (7t AI,J( 1 )! ( )
whereA, ;(t,t") is given by
! 1 ! ’
Att) = E[<S(0Bj(t ) = (Bi()s;(t'))]. (27

Equations(26) and (27) are the main result of this paper.
They are identical to Eq$4) and(5) for Langevin dynamics,
since the observablB entering in the asymmetrid$) and
(27) plays the same role in the two cases. In fact, @49) is
the analog of

KP(x.1))

P (B(g(X,1)))

(28)

obtained from Eq(2) after averaging over the noise.

In summary, Eq(26) is a relation between the response
function and correlation functions of the unperturbed kinet-
ics, which generalizes the FDT. Furthermore, E2p) ap-
plies to a wide class of systems. In addition to being obeyed
by soft and hard spins, it holds both for COP and NCOP
dynamics. Moreover, as is clear by its derivation, E2f)
does not require any particular assumption on the Hamil-
tonian nor on the form of the unperturbed transition rates.

III. DYNAMICS IN DISCRETE TIME:
THE NUMERICAL ALGORITHM

We now discuss the numerical implementation of the fluc-
tuation dissipation relation derived above, as a method to
compute the response function without imposing the external
magnetic field(6). Let us recall that Eq(22) was obtained
letting At—0

1 AC; (Lt
TR,(tt) =3 lim —'A@—@(t—At)Bj(t'» :

(29)

In the simulations of aN-spin system, time is discretized by
the elementary spin updates. Measuring time in Monte Carlo
steps, the smallest available tinae1/N is the one associ-
ated to a single update. Then, in discrete time, (26). reads
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, 1Ci,j(t,t' +e) - Ci,j(t,t’) 1 , The correlations functions appearing in this equation cannot
TR,tt) =7 — (s(t-B(t") be extracted numerically from the behavior of the original
2 € 2 . .
(30 unperturbed system, and cannot be accessed in an experi-
ment.

and we use this for the numerical calculation of the response Another difference between E¢33) and Eq.(32) con-
function. For completeness we also give the expression fof€'ns the choice oM([s],[s']). Our results are obtained
the integrated response function with M([S],[S,]):O. |nStead, Eq(33) Corresponds to
M([s],[s']) #0. In fact, Eqg.(33) assumes heat bath tran-
sition ratesw([s]—[s'])={exd —H[s' ]/ T]}/{exd—H][s]/T]
+exd —H[s']/T]}; expanding this expression to first order in

. o . powers ofh/T, and comparing with Eq.13), one has
which correspond to the application of a constant field be-

T
X ([ ]) :f R (tt)dt, 3D
ty

tween the times,, andt. From Eq.(30) we have o h ghls'IT _ gHIsIIT
- M(sl[sD =2k -s)—F—. (39
t 1 21! eMIS' VT 4 gHIsIT
TXiJ(t'[t'tW]):TEZ Rtt)= E[Ciyi(t't)_ Gij(t.tw] RetainingM([s],[s']) in Eq. (13) and following the same
Ftw - steps as foM([s],[s'])=0, one finds the extra term
€
-~ 2 (s(t-9By(t), T
2.7 : ARG = X spllshisTt)
" I [s10s'1]
(32
) _ 0 andsT i for th A XM([s'][s'DIW([s"] —[s'])
wheret-e=t>t,=0 and3!,_, stands for the sum over the _ ) ) -
: ¢ T Ay xp([s'],t") =wo([s']— [s"Dp([s'],t")]
discrete times in the intervét,,,t]. (35

in addition to the quantities already present on the RHS of
Eq. (26). This term cannot be related to correlation functions.
Expressions for the response function in a discretized timét is generally believed that the large-scale—long-time prop-
dynamics have been derived previously by Chatdlajrand  erties of the dynamicéperturbed or ngtdo not depend too
Ricci-Tersenghi[3]. Restricting to transition rates of the much, within a given universality class, on the form of the
heat-bath form and to the case of single flip dynamics theyransition rates. Then one expects the correctiaRgt,t’)
have obtained introduced by different choices dfl([s],[s']) to be negli-
gible. Indeed, as will be shown in Secs. V and VI, numerical
results obtained for the Ising model th=1,2 with the two

T
— W _
Txij(t.[tt]) = | %) Tgt S¢S OLs(7) =~ s (D e, algorithms are not sensitive to the choiceMf[s],[s']).

IV. COMPARISON WITH DIFFERENT ALGORITHMS

(33

wherel(7) is the index of the site updated at the discrete time
7, 1(t,t,) is a specific sequence of7)'s between the times As an application of the numerical method, we compute
t,, andt, s/'(7) =tantigh}"(n] andh"(7) is the local field due  the autoresponse functid®(t,t')=R;;(t,t') in thed=1 Ising
to the spins interacting with;. model, with and without conservation of the order parameter.
It is important to stress the differences between E83.  We consider the system prepared in the infinite temperature
and(32). Although in the right-hand-sidéRHS) of Eq. (33)  equilibrium state and quenched to the finite temperaiure
there appears an unperturbed correlation function, this is>0 at the timet=0. Since the critical temperature vanishes
computed in thead hockinetic rule introduced for the pur- for d=1, the final correlation length is finite and equilib-
pose of evaluating the response function. In B@), instead, rium is reached in a finite time.,~ ggq, wherez is the dy-
the average in the RHS is computed in the true unperturbedamic exponent. For deep quenchggis large and, after a
dynamics of the system. This important difference arises becharacteristic times, a well defined nonequilibrium scaling
cause of the presence of the delta functin, in Eq. (33), regime sets in fot,.<t < 7., characterized by the growth of
which constrains to update at the timenly the spin at the the domains with a typical size(t) ~t*“ We study the scal-
site j, where the external field is applied. Then, in the aver-ing properties of the response functit,t’) when botht
aging procedure, only the subset of dynamical trajectoriegndt’ belong to the scaling regime.
with I(7)=] are considered, while all the others get zero sta-
tistical weight, which is not what happens in the true unper-
turbed dynamics. Equatio(83), therefore, although useful
for the computation of the response function, is operatively The linear response function in the model with single spin
restricted to a numerical protocol with a sequential updatindlip dynamics has been computed analyticd®+10]. This
satisfying the constraint imposed by the delta functébp,.  case, therefore, is useful as a test for the accuracy of the

V. RESPONSE FUNCTION OF THE ISING CHAIN

A. Nonconserved dynamics

036104-4
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107" A2:1/(\57r) andty=1/(2m) the simple algebraic forni38)
gives a very good approximation of the exact solution all

o—» Algorithm from Eq.(31) over the time domain, from short to large time separations.

+—a Algorithm from Eq.(32) | Rewriting Eq.(38) as
~ | TR(t,t') ~ L(t") TRyt - t"), (39
\:_: where
I~
= | TRingt - t') = At —t) 17 (40)

the physical meaning becomes clear, sih¢e)™ is propor-
tional to the density of defects(t’) at timet’, and Rgjn(t
—t’) can be interpreted as the response associated to a single
10'41 2 I 5 defect. In other words, E¢39) means that the total response
t/t’ is given by the contribution of a single defect times the den-
sity of defects at the tim&'. As a matter of fact, EqQ439)
FIG. 1. R(t,t") in thed=1 Ising model with NCOPT=0.3],and  and(40) are the particular realization of a general pattern for
J=1. The number of spins i8l=1C% t'=100, 250, 500(MCS)  the aging part of the response functifir]
from top to bottom. Data from different algorithms correspond to
different symbols. Continuous curves are the plots of B6). R(t,t) ~ L(t") "Rangt — t)F(t/L'). (41)

The presence of the scaling functié(t/t’) in Eq. (41) for
algorithm. In the aging regimé& <t= 7, the autoresponse d>1 can be explained as follows: id=1 interfaces are
function R(t,t") is given by[9] pointlike and the interaction between them always produces

N et N ot , , annihilation. This is accounted for by the defect density
TRt ) =€ lg(t—t)e™™ [Io(2t) +12(2t')], (36) | ()1 sof(t/t’)=1. In higher dimension, however, defects
wherel ,(x) are the modified Bessel functions. are extended objects whose interaction can produce a wealth
In order to improve the signal to noise ratio, we have©f different situations, which are globally described by a suit-
extractedR(t,t') from the integrated autoresponse functionable scaling functiorf(t/t’).
x(t,[t"+68,t']) by choosingé in the following way. Expand-
ing for small 6 we have

B. Conserved dynamics

XU +ot]) R+ IIR(tT) (37) The generality of the structure of Eq89) and (40) may
1) ' 2 o’ soon be tested by looking at the response function in the

. . Ising chain with COP dynamics. While for NCOP the system

then, for a given IeveI_ of a_ccuracR(t,t’) can k_)e obtained . iers the scaling regime almost immediately, sihge 1,

from x(t,[t'+5,t'])/5 if & is chosen ﬂapropnately small. t5r COP the timet.. for the onset of the scaling regime is of

Notice that, assuming scalifi(t,t") =t @DE(t'/1), from Q. the order of the characteristic time, ~ exp(4J/T) for the

(37) one has that, for a given value aft'/t, the second  geparation(evaporatioh of a spin from the boundary of a

term on the RHS produces a relative correctiongomain. The equilibration time, instead, is given by,
AR(t,t)/R(t,t)=(1/2)[f"(x)/f(x)](6/t) of orders/t. Inour  _exy103/T) [12]. In order to have a large scaling regime,
simulations we have chosef=1 and, since the simulated namely, 7e>ts, it iS Necessary to takd/J<1, and to
times aret=100, we have always/t<102 In the follow-  chooset, >t., Simulations of the system in these conditions
ing it is understood that all numerical results R(t,t') are  gre excessively time demanding with a conventional Monte
obtained in this way. _ _ Carlo algorithm. Therefore we have resorted to the fast algo-
In Fig. 1 we compare the numerical results obtained bytjthm of Bortz, Kalos, and Lebowit£13], which is much
means of the algorithntB2), for three different values df,  more efficient at low temperatures. With a conventional al-
with the exact solutior{36). We have also plotted the data gorithm a number of attempts proportionaldg is necessary
obtained using the algorithn83) of Ricci-Tersenghi[3],  on average before the evaporation of a spin from a domain
finding an excellent agreement between the curves generate@curs. Then, at low temperatures, a huge amount of at-
by the different algorithms and the analytical expressionempted moves are rejected, causing a very low efficiency.
(36). . . _ The algorithm of Bortz, Kalos, and Lebowitz, instead, is re-
The physical meaning of the exact solution can be undefjection free: moves are always accepted and time is increased
stood by replacing Eq(36) with the simple interpolating proportionally to the inverse probability associated with
formula them. We stress that this is not an approximate kinetics, but a
"= A =Lz _ g 1/z-1 clever implementation of the exact dynamics.

TRE) =ALTH - + ) (38) From the unperturbed system the response function is ex-
obtained by replacing the Bessel functions with the dominantracted through Eq32), as in the case of NCOP. About the
term in the asymptotic expansion and by inserttggas a  choice of 5, for COP the simulated times ate= 10’ and we
regularization oR(t,t’) at equal times. For NCOR=2. With  can haved/t<107, as required for the correction term in
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L5, | 1
10 I | L
10° 10° 10° 1 2 4 8
t (MCS) t/t’
FIG. 2. p(t) in the d=1 Ising model with COPT=0.3] andJ FIG. 3. R(t,t") in thed=1 Ising model with COPT=0.3J and

=1. The number of spins i=10% The range of time used in the J=1. The number of spins i8l=1C%, t'=10", 2.5x 10’, 5x 10’
simulations for the computation of the response function is in be{MCS) from top to bottom. Continuous curves are the plots of Egs.
tween the vertical lines. The dashed line represents the asymptoti@9) and (40). Fitting parameters ar&;=0.24,t5=5x 10°.
law p(t) ~t™1/3,

algorithm of Ricci-Tersenghi3]. In Fig. 4 we compare re-

Eq. (37) to be negligible, withs=1C°. We have performed sults obtgined with our methqd and wiFh that_ of Ricci-
simulations withT=0.3J, corresponding td,~6X 1¢° and Tersenghi, for several values gfin the sca]mg regime. The .
Teq=3% 10%. In these conditions the scaling regime is Veryagreement between the two algorithms is Qxcellent aIsp in
large. Actually, after a very narrow initial regime, where this case. The equivalence of the two algorithms botld in
single spins diffuse until they are adsorbed on an interface L @nd ind=2 suggests, recalling the discussion at the end
no evaporations occur and the system is frozen up to times & Sec. IV, that different choices dfl([s],[s']) do not pro-
orderr,,. In this time regime the density of defegté) stays ~ duce significant differences. _ B

constant, as shown in Fig. 2. Then, fa=r., the Let us comment on the behavior th.,tw). AS'It is 'well
evaporation-condensation mechanism takes place and t#&0own, in the late stage of phase-ordering the interior of the
systems gradually enters the scaling regime. The range &fowing domains is eq_uﬂlbrz_ited, while interfaces are out of
times explored for the computation of the response functioffauiliorium. Then, a distinction can be made between bulk
is shown in Fig. 2. This has been chosen as a compromis%nd interface fluctuations. Accordingly, for the ZFC one has
between the necessity to go to the largest accessible times, [R1-23

order to work well inside the scaling regime, and to speed up X(tty) = Xsltty) + Xagtty)- (42)

the simulation to have a good statistics. For COP, the obser- ] - ]
vation of the asymptotic behavigi(t) ~ X with z=3, re- Here x(t,t,) is the contribution from the bulk of domains,
quires very large timgl14]. In the range of times explored for Which behaves as the equilibrium responggt,t,) in the

the computation ofR(t,t’) the effective exponentz
=—[dIn p(t)/dInt]* has reached the valug;=3.44.

We have plotted in Fig. 3 the numerical data f®(t,t’) 006}~ ¢
together with the curves obtained from the analytical form 4
(38), where we have substituted fatthe above value ofq 005 7 ”
and we have used; andt, as fitting parameters. The com- g
parison is good and suggests that the physical interpretation =* **
behind the form(39) and (40) of the response function, ap- Eé
plies also to thel=1 Ising model with spin exchange dynam-
ics [15]. We expect the more general for(d1) to hold in 002k
higher dimension with COP.

0,07

0,03

001§—
VI. RESPONSE FUNCTION OF THE D=2 ISING MODEL — L

t-t_ (MCS)

As a further application of the numerical method, we
compute the zero field coole@FC) magnetizationy(t,t,,) FIG. 4. y(t.t,) in the d=2 Ising model with NCOPT=J=1.
=x(t,[t,t,]) in the d=2 Ising model with NCOP, quenched The number of spins isl=160, t,=1x 10 t,=1.5% 10 t,=2
from the infinite temperature equilibrium state to a tempera-x 108, t,=2.5x 10?, t,,=3x 103, from top to bottom. Circles rep-
ture belowT.. This quantity has already been measured bothesent data obtained with the algorithm of E8), continuous lines
by applying the perturbatiofil1,16—18 or by means of the are the results with the Ricci-Tersenghi meth88).
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known, one obtains data collapse by plottitiy(t,t,)
againstx, as shown in the inset of Fig. 5, confirming the
validity of the scaling form(43).

VIl. CONCLUDING REMARKS

;} In this paper we have derived a generalization of the FDT
:x out of equilibrium for systems of Ising spins, which takes
0,044 - exactly the same form of the FDT generalization previously

0,035

—0,1 +

1
1024

t,, (MCs)

|
2048

derived[1] for soft spins, evolving with Langevin dynamics.
We have shown that this fluctuation dissipation relation,
which reduces to the usual FDT when equilibrium is reached,
is obeyed in complete generality both by systems with COP
and NCOP. In addition to the theoretical interest, as a con-
tribution to the understanding of the FDT in the out of equi-

librium regime, our result is also promising as a convenient
FIG. 5. The same data of Fig. 4 obtained with the algorithm oftgg| for the computation of the linear response function in
Eq. (32 plotted for fixed values ok againstt,,. Straight lines are  humerical simulations without applying the perturbation,
power Ia\_/v best fits. In the inset the data collapsetfaft,t,,), with along the lines of Refd2,3]. With standard methods, the
a=0.26, is shown. requirement to work in the linear regime, namely, with an
adequately small perturbation, sometimes is very subtle and
ordered state at the temperatufe This quantity, starting hard to be checked. This problem is avoided by this new
from zero att=t,,, saturates to the value M?, M being the  class of algorithms. Moreover, the statistical accuracy of the
equilibrium magnetization. The other term appearing in Eqresults is, for comparable CPU times, much better because
(42), namely, the additional aging contribution due to thesimulations of perturbed systems usually require additional
interfaces, is much less known. It is expected to scale as statistical averages over realizations of thendom pertur-
bation. We have demonstrated the high quality of the results
)_ (43) produced by our algorithm by computing the response func-
tion of the Ising model id=1 and the integrated response

In previous studieg11,17,18, an auxiliary dynamics, fu.nction.in d=2. In q:2 our results agree with thos.e ob-
which prevents flips in the bulk, was used in order to extracfa',ned with the algorithm of Ref3] and with previous simu-
the aging part of the response in Ed2). Here, instead, we ations performed applylng the pertu_rbatlon. We conflrm that
have chosen a different technique to isolatg(t,t,): We x(t.t,) obeys a scaling forn(43) with a=0.26+0.01, in
compute the fully(t,t,) in the Glauber dynamics working at 29réement with previous determinatiofisl, 17,18 of this

a sufficiently low temperature whergy(t,t,) is negligible. exponent. Inq:1, for NCOP our results are in exc_ellent
In fact, by choosingr=J, the asymptotic value of(t,t,) is agreement with the exact analytical solution and with the
] — sttty tw

2 imulation made with the algorithm of R¢8]. In the case of
1 (tl\:l )_ig'ci?é‘l'r;ﬂuzh c)sfmtziiri?arstr::?)r;stir:jeefeodm%jriﬂ V(;irll:ei; OP, where no analytical solution is available, we have ob-
X w 9 ' Yained results which substantiate the existence of the com-
X(t’tW):).(a.g(t’tW)‘ L . mon structuré39) and(40) of the response function for COP

In addition to this d_lfferenc_:e, previous resultsl, 17,18 and NCOP. These results show that the algorithm is efficient

on xa(t,ty) were obtained with the usual method where ag,,9h to give access to the direct measurement of the im-
perturbation is applied. The strengthof the perturbation pulsive response functioR(t,t’), which is too noisy to be
must be chosen sufficiently small to work in the linear re-q, 1 1oq with standard methods. For this reason, previous
gime. However, by reducin the signal to noise ratio low- ’

ool T
Xagtitw) = t 2f ( -

W

value of h compatible with the requisite of working in the
linear regime. While this point may be subtle, in the result
presented in this paper the linfit— 0 is taken analytically in
the derivation of the algorithm.

We have extracted from the data of Fig. 4 by plotting
x(t,t,) againstt,, with x=t/t, held fixed. The results are
shown on a double logarithmic plot in Fig. 5. According to
the scaling form43), for different values ok the data must
align on straight lines with the same slope This is very
well compatible with the curves of Fig. 5, indicating that
scaling is obeyed. Computingas the slope of these curves
we finda=0.26+0.01. This result agrees very well with the  We are much indebted to Claudio Castellano for valuable
value found in Refs[11,17,18. Once this exponent is suggestions on the numerical techniques. This work has been

field cooled magnetization, which are easier to compute.
However, as discussed in detail in REL1], it is quite a
delicate task to extract the propertiesRif,t’) from those of

the integrated response functions. Therefore, the feasibility
of direct computations oR(t,t’) is an important develop-
ment in the field, which is expected to solve a number of
problems still opefil1] on the scaling behavior &(t,t’) for
d>1.

ACKNOWLEDGMENTS

036104-7



LIPPIELLO, CORBERI, AND ZANNETTI PHYSICAL REVIEW E71, 036104(2005

partially supported from MURST through Grant No. PRIN- . . S(K,t)
2002. (p(k, ) (K, 1) = 2TK'P\ ———— ), (A7)
on(k',t')
APPENDIX A we find
Let us write the Langevin equation in the general form 2TR(K K ') = (K, (K’ ,t")) (A8)
Ib(X.) R or in real space
“a - UVIB@XO) O]+ nxD, (AL 2TREAX 1) = (%) (X' 1) (A9)

where h(X,t) is the external field conjugated to the orders’hOWIng that Eq(3) holds in the same form for NCOP and

parameterp=0 or p=2 for NCOP or COP, respectively, and '
the noise correlator is given by APPENDIX B

- - I , The transition rates, with and without the external field,
(X7 1)) = (V)P2ToX-X) ot -t).  (A2) satisfy the detailed balance conditiohl). Writing w"([s]

Fourier transforming with respect to space, these become — [ )=W(s]—[s'DAw(s]—[s']) and H's]=Hs]
+AH[s], from Eq.(11) follows

ap(K,1) R . R
D <B4 K0 +hK DT+ KD (A3) Aw(ls] [S,Dexp{_ AH[S]]
T
and AH[S/]
. _ o =Aw([s'] — [s])exp ——— |. (B1)
(kDK t) = 2TKP2m)Is(k+ k) St —t'), (A4)
. . . Using AH[s]=-sh;, Eq. (B1) is satisfied byAw([s]—[s'])
WheLEBI.([d’]’k’t) Is the l:ourlgr tr.anc'jsf(;.rmdd;(gb(x,t)). :exp{—[1/(2T)]hj(sj—sj’)} up to a factorM ([s],[s']) which
The linear response function is defined by satisfiesM([s],[s'])=M([s'],[s]). Therefore, the most gen-
SH(K,1) eral form of the perturbed transition rates, compatible with
RKt,K 1) = ———2N (A5)  detailed balance, is given by
Sh(k',t") | h=o 1
with t=t’. Notice that, sincep(k,t) and kPh(k,t) enter the Aw(s] - [s']) = exp{— 2_Thj(Sj _SJ)]M([S]’[S ).
equation of motion(A3) in the same way, we have (B2)
Spkt) \ 1 XK For h=0 the conditon Aw(s]—[s'])=1 implies
SRty K'P Sh(K' ) | oo (A6) M([s],[s'])=1. Therefore, to linear order in the perturbation

one hasM([s],[s']) =1+M([s],[s']). Inserting this result in
where(- --) denotes averages in absence of the external fieldzq. (B2), and expanding also the exponential term, to linear
Then, using the identit{24] order inh/T one obtains Eq(13).
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