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We derive for Ising spins an off-equilibrium generalization of the fluctuation dissipation theorem, which is
formally identical to the one previously obtained for soft spins with Langevin dynamicsfL.F. Cugliandolo, J.
Kurchan, and G. Parisi, J. Phys. I4, 1641s1994dg. The result is quite general and holds both for dynamics with
conserved and nonconserved order parameters. On the basis of this fluctuation dissipation relation, we con-
struct an efficient numerical algorithm for the computation of the linear response function without imposing the
perturbing field, which is alternative to those of ChatelainfJ. Phys. A36, 10 739s2003dg and Ricci-Tersenghi
fPhys. Rev. E68, 065104sRd s2003dg. As applications of the new algorithm, we present very accurate data for
the linear response function of the Ising chain, with conserved and nonconserved order parameter dynamics,
finding that in both cases the structure is the same with a very simple physical interpretation. We also compute
the integrated response function of the two-dimensional Ising model, confirming that it obeys scaling
xst ,twd. tw

−afst / twd, with a=0.26±0.01, as previously found with a different method.
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I. INTRODUCTION

In the recent big effort devoted to the understanding of
systems out of equilibrium, of particular interest is the prob-
lem of the generalization of the fluctuation dissipation theo-
rem sFDTd. The autocorrelation functionCst− t8d of some
local observable and the corresponding linear response func-
tion Rst− t8d in equilibrium are related by the FDT

Rst − t8d =
1

T

]Cst − t8d
]t8

. s1d

The question is whether an analogous relation also exists
away from equilibrium, namely, whether it is still possible to
connect the response function to properties of the unper-
turbed dynamics, possibly in the form of correlation func-
tions.

A positive answer to this question exists when the time
evolution is of the Langevin type. Consider a system with an
order parameter fieldfsxWd evolving with the equation of mo-
tion

]fsxW,td
]t

= B„fsxW,td… + hsxW,td, s2d

where B(fsxW ,td) is the deterministic force andhsxW ,td is a
white, zero-mean Gaussian noise. Then, the linear response
function is simply given by the correlation function of the
order parameter with the noise

2TRst,t8d = kfsxW,tdhsxW,t8dl, s3d

whereT is the temperature of the thermal bath andtù t8 by
causality. It is straightforwardf1g to recast the above relation
in the form

TRst,t8d =
1

2

]Cst,t8d
]t8

−
1

2

]Cst,t8d
]t

− Ast,t8d, s4d

where

Ast,t8d ;
1

2
fkfsxW,tdB„fsxW,t8d…l − kB„fsxW,td…fsxW,t8dlg

s5d

is the so-called asymmetry. Equations4d for s3dg qualifies as
an extension of the FDT out of equilibrium, since in the
right-hand side unperturbed correlation functions appear and,
when time translation and time inversion invariance holds,
reduces to the equilibrium FDTs1d. In Appendix A we show
that this equation holds in the same form both for conserved
order parametersCOPd and nonconserved order parameter
sNCOPd dynamics.

The next interesting question is whether one can do the
same also in the case of discrete spin variables, where there
is no stochastic differential equation and, therefore, Eq.s3d is
not available. For spin variables governed by a master equa-
tion, this problem has been considered in recent papers by
Chatelain f2g, Ricci-Tersenghi f3g, Diezemann f4g, and
Crisanti and Ritortf5g. However, although important for
computational and analytical calculations, their results, as we
shall explain below, cannot be regarded as generalizations of
the FDT in the sense of Eq.s4d. In Refs.f2,3g, a scheme is
presented whereRst ,t8d is related to unperturbed correlation
functions which, however, are not computed in thetrue dy-
namics of the system. Rather, as will be clarified in Sec. IV,
these correlation functions are computed through an auxil-
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iary dynamical rule, instrumental to the construction of an
algorithm for the computation ofRst ,t8d. On the other hand,
in Refs. f4,5g, Rst ,t8d is related to quantities that can be
extracted from the dynamics of the unperturbed system, but
not all of them can be put in the form of correlation func-
tions.

Instead, we have succeeded in deriving for Ising spin sys-
tems a genuine off equilibrium generalization of the FDT,
which takes exactly the same form as Eqs.s4d and s5d and
which holds, as in the Langevin case, for NCOPsspin flipd
and COPsspin exchanged dynamics. Furthermore, using this
result we have derived an efficient numerical method for the
computation of the response function, without imposing the
perturbing conjugate field, which is alternative to those of
Refs.f2,3g.

The paper is organized as follows. In Sec. II we introduce
the formalism and derive the off equilibrium FDT. In Sec. III
we introduce the dynamics in discrete time in order to de-
velop a numerical algorithm based on the fluctuation dissi-
pation relation. Section IV is devoted to a comparative dis-
cussion of our method with those of Chatelain and Ricci-
Tersenghi. In Sec. V the algorithm is applied to the
investigation of the scaling properties of the response func-
tion in the one dimensional Ising model with NCOPsSec.
V A d and COP dynamicssSec. V Bd. As a further application
of the method we study in Sec. VI the integrated response
function of the Ising model ind=2. In Sec. VII we make
concluding remarks.

II. FLUCTUATION DISSIPATION RELATION
FOR ISING SPINS

We consider a system of Ising spinssi = ±1 executing a
Markovian stochastic process. The problem is to compute the
linear responseRi,jst ,t8d on the spin at the sitei and at the
time t, due to an impulse of external field at an earlier timet8
and at the sitej . Let

hjstd = hdi,just − t8dust8 + Dt − td s6d

be the magnetic field on thej th site acting during the time
interval ft8 ,t8+Dtg, whereu is the Heavyside step function.
The response function then is given byf2,5g

Ri,jst,t8d = lim
Dt→0

1

Dt
U ]ksistdl

]hjst8d
U

h=0
, s7d

where

U ]ksistdl
]hjst8d

U
h=0

= o
fsg,fs8g,fs9g

sipsfsg,tufs8g,t8 + Dtd

3U ]phsfs8g,t8 + Dtufs9g,t8d
]hj

U
h=0

psfs9g,t8d

s8d

and fsg are spin configurations.
Let us concentrate on the factor containing the conditional

probability in the presence of the external fieldphsfs8g ,t8
+Dt u fs9g ,t8d. In general, the conditional probability forDt
sufficiently small is given by

psfsg,t + Dtufs8g,td = dfsg,fs8g + wsfs8g → fsgdDt + OsDt2d,

s9d

where we have used the boundary conditionpsfsg ,t u fs8g ,td
=dfsg,fs8g. Normalization of the probability implies

o
fs8g

wsfsg → fs8gd = 0. s10d

Furthermore, the transition rates must verify detailed balance

wsfsg → fs8gdexps− Hfsg/Td = wsfs8g → fsgdexps− Hfs8g/Td,

s11d

whereHfsg is the Hamiltonian of the system. In the follow-
ing we separate explicitly the diagonal from the off-diagonal
contributions inwsfsg→ fs8gd

wsfsg → fs8gd = − dfsg,fs8g o
fs9gÞfsg

wsfsg → fs9gd

+ s1 − dfsg,fs8gdwsfsg → fs8gd, s12d

where we have used Eq.s10d.
Introducing the perturbing field as an extra termDHfsg

=−sjhj in the Hamiltonian, to linear order inh the most gen-
eral form of the perturbed transition rateswhsfsg→ fs8gd
compatible with the detailed balance condition isssee Ap-
pendix Bd

whsfsg → fs8gd = w0sfsg → fs8gdH1 −
1

2T
hjssj − sj8d

+ Msfsg,fs8gdJ , s13d

whereMsfsg ,fs8gd is an arbitrary function of orderh/T sym-
metric with respect to the exchangefsg↔ fs8g and w0sfsg
→ fs8gd are unspecified unperturbed transition rates, which
satisfy detailed balance. Note that, since Eq.s11d reduces to
an identity forfsgÞ fs8g, Eq. s13d does not hold for the di-
agonal contributionwhsfsg→ fsgd which, in turn, can be ob-
tained by the normalization conditionofs8gw

hsfsg→ fs8gd=0.
In the following, for simplicity, we will takeMsfsg ,fs8gd=0
and the role of a different choice forMsfsg ,fs8gd will be
discussed in Sec. IV.

Using Eqs.s9d, s12d, ands13d we obtain

TU ]phsfsg,t + Dtufs8g,td
]hj

U
h=0

= Dtdfsg,fs8g
1

2 o
fs9gÞfsg

w0sfsg → fs9gdssj − sj9d

+ Dts1 − dfsg,fs8gd
1

2
w0sfsg → fs8gdssj8 − sjd s14d

and inserting this result in Eq.s8d, the response function can
be written as the sum of two contributionsf6,7g
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TRi,jst,t8d = lim
Dt→0

fTDi,jst,t8,Dtd + TD̄i,jst,t8,Dtdg, s15d

where the first term comes from the diagonal part of Eq.s14d

TDi,jst,t8,Dtd =
1

2 o
fsg,fs8g

sipsfsg,tufs8g,t8 + Dtd

3 o
fs9gÞfs8g

w0sfs8g → fs9gdssj8 − sj9dpsfs8g,t8d,

s16d

whereasD̄i,j takes all the off-diagonal contributions

TD̄i,jst,t8,Dtd =
1

2 o
fsg,fs8g,fs9gÞfs8g

sipsfsg,tufs8g,t8 + Dtdssj8 − sj9d

3w0sfs9g → fs8gdpsfs9g,t8d. s17d

Using the time translational invariance of the conditional
probability psfsg ,t u fs8g ,t8+Dtd=psfsg ,t−Dt u fs8g ,t8d, one
can writeDi,jst ,t8 ,Dtd in the form of a correlation function

TDi,jst,t8,Dtd = −
1

2
ksist − DtdBjst8dl, s18d

where

Bj = − o
fs9g

ssj − sj9dw
0sfsg → fs9gd. s19d

Using Eqs.s9d ands12d the off-diagonal contribution can be
written as

TD̄i,jst,t8,Dtd =
1

2

DCi,jst,t8d
Dt

, s20d

where

DCi,jst,t8d = ksistdfsjst8 + Dtd − sjst8dgl

= ofsg,fs8g,fs9g sissj8 − sj9dpsfsg,tufs8g,t8 + Dtd

3psfs8g,t8 + Dtufs9g,t8dpsfs9g,t8d. s21d

Therefore, putting together Eqs.s18d ands20d and taking the
limit Dt→0 we obtain

TRi,jst,t8d =
1

2

]Ci,jst,t8d
]t8

−
1

2
ksistdBjst8dl. s22d

In order to bring this into the form of Eqs.s4d and s5d, we
notice that from Eqs.s9d and s12d follows

dksjstdl
dt

= o
fsg

sj
dpsfsg,td

dt

= − o
fsg

o
fs9gÞfsg

sjw
0sfsg → fs9gdpsfsg,td

+ o
fsg,fs8gÞfsg

sjw
0sfs8g → fsgdpsfs8g,td. s23d

Hence, after the change of variablesfsg→ fs9g ,fs8g→ fsg in
the second sum, one obtains

dksjstdl
dt

= − o
fsg

o
fs9gÞfsg

ssj − sj9dw
0sfsg → fs9gdpsfsg,td

= kBjstdl. s24d

In a similar way, it is straightforward to derive

]Ci,jst,t8d
]t

− kBistdsjst8dl = 0 s25d

and subtracting this from Eq.s22d we finally find

TRi,jst,t8d =
1

2

]Ci,jst,t8d
]t8

−
1

2

]Ci,jst,t8d
]t

− Ai,jst,t8d, s26d

whereAi,jst ,t8d is given by

Ai,jst,t8d =
1

2
fksistdBjst8dl − kBistdsjst8dlg. s27d

Equationss26d and s27d are the main result of this paper.
They are identical to Eqs.s4d ands5d for Langevin dynamics,
since the observableB entering in the asymmetriess5d and
s27d plays the same role in the two cases. In fact, Eq.s24d is
the analog of

]kfsxW,tdl
]t

= kB„fsxW,td…l s28d

obtained from Eq.s2d after averaging over the noise.
In summary, Eq.s26d is a relation between the response

function and correlation functions of the unperturbed kinet-
ics, which generalizes the FDT. Furthermore, Eq.s26d ap-
plies to a wide class of systems. In addition to being obeyed
by soft and hard spins, it holds both for COP and NCOP
dynamics. Moreover, as is clear by its derivation, Eq.s26d
does not require any particular assumption on the Hamil-
tonian nor on the form of the unperturbed transition rates.

III. DYNAMICS IN DISCRETE TIME:
THE NUMERICAL ALGORITHM

We now discuss the numerical implementation of the fluc-
tuation dissipation relation derived above, as a method to
compute the response function without imposing the external
magnetic fields6d. Let us recall that Eq.s22d was obtained
letting Dt→0

TRi,jst,t8d =
1

2
lim

Dt→0
FDCi,jst,t8d

Dt
− ksist − DtdBjst8dlG .

s29d

In the simulations of anN-spin system, time is discretized by
the elementary spin updates. Measuring time in Monte Carlo
steps, the smallest available timee=1/N is the one associ-
ated to a single update. Then, in discrete time, Eq.s29d reads
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TRi,jst,t8d =
1

2

Ci,jst,t8 + ed − Ci,jst,t8d
e

−
1

2
ksist − edBjst8dl

s30d

and we use this for the numerical calculation of the response
function. For completeness we also give the expression for
the integrated response function

xi,jst,ft̄,twgd =E
tw

t̄

Ri,jst,t8ddt8, s31d

which correspond to the application of a constant field be-
tween the timestw and t̄. From Eq.s30d we have

Txi,jst,ft̄,twgd = Te o
t8=tw

t̄

Ri,jst,t8d =
1

2
fCi,jst, t̄d− Ci,jst,twdg

−
e

2 o
t8=tw

t̄

ksist − edBjst8dl,

s32d

wheret−eù t̄. twù0 andot8=tw

t̄ stands for the sum over the

discrete times in the intervalftw, t̄g.

IV. COMPARISON WITH DIFFERENT ALGORITHMS

Expressions for the response function in a discretized time
dynamics have been derived previously by Chatelainf2g and
Ricci-Tersenghif3g. Restricting to transition rates of the
heat-bath form and to the case of single flip dynamics they
have obtained

Txi,jst,ft̄,twgd = o
Ist̄,twd

o
t =tw

t̄

d j ,Istdksistdfsjstd − sj
WstdglIst̄,twd,

s33d

whereIstd is the index of the site updated at the discrete time
t, Ist̄ ,twd is a specific sequence ofIstd’s between the times
tw, andt̄, sj

Wstd=tanhfbhj
Wstdg andhj

Wstd is the local field due
to the spins interacting withsj.

It is important to stress the differences between Eqs.s33d
and s32d. Although in the right-hand-sidesRHSd of Eq. s33d
there appears an unperturbed correlation function, this is
computed in thead hockinetic rule introduced for the pur-
pose of evaluating the response function. In Eq.s32d, instead,
the average in the RHS is computed in the true unperturbed
dynamics of the system. This important difference arises be-
cause of the presence of the delta functiond j ,Istd in Eq. s33d,
which constrains to update at the timet only the spin at the
site j , where the external field is applied. Then, in the aver-
aging procedure, only the subset of dynamical trajectories
with Istd= j are considered, while all the others get zero sta-
tistical weight, which is not what happens in the true unper-
turbed dynamics. Equations33d, therefore, although useful
for the computation of the response function, is operatively
restricted to a numerical protocol with a sequential updating
satisfying the constraint imposed by the delta functiond j ,Istd.

The correlations functions appearing in this equation cannot
be extracted numerically from the behavior of the original
unperturbed system, and cannot be accessed in an experi-
ment.

Another difference between Eq.s33d and Eq.s32d con-
cerns the choice ofMsfsg ,fs8gd. Our results are obtained
with Msfsg ,fs8gd=0. Instead, Eq. s33d corresponds to
Msfsg ,fs8gdÞ0. In fact, Eq. s33d assumes heat bath tran-
sition rateswsfsg→ fs8gd=hexpf−Hfs8g /Tgj / hexpf−Hfsg /Tg
+expf−Hfs8g /Tgj; expanding this expression to first order in
powers ofh/T, and comparing with Eq.s13d, one has

Msfsg,fs8gd =
hj

2T
ssj8 − sjd

eHfs8g/T − eHfsg/T

eHfs8g/T + eHfsg/T
. s34d

RetainingMsfsg ,fs8gd in Eq. s13d and following the same
steps as forMsfsg ,fs8gd=0, one finds the extra term

DRst,t8d =
T

hj
o

fsg,fs8g,fs9g

sipsfsg,tufs8g,t8d

3Msfs8g,fs9gdfw0sfs9g → fs8gd

3psfs9g,t8d − w0sfs8g → fs9gdpsfs8g,t8dg
s35d

in addition to the quantities already present on the RHS of
Eq. s26d. This term cannot be related to correlation functions.
It is generally believed that the large-scale–long-time prop-
erties of the dynamicssperturbed or notd do not depend too
much, within a given universality class, on the form of the
transition rates. Then one expects the correctionsDRst ,t8d
introduced by different choices ofMsfsg ,fs8gd to be negli-
gible. Indeed, as will be shown in Secs. V and VI, numerical
results obtained for the Ising model ind=1,2 with the two
algorithms are not sensitive to the choice ofMsfsg ,fs8gd.

V. RESPONSE FUNCTION OF THE ISING CHAIN

As an application of the numerical method, we compute
the autoresponse functionRst ,t8d=Ri,ist ,t8d in thed=1 Ising
model, with and without conservation of the order parameter.
We consider the system prepared in the infinite temperature
equilibrium state and quenched to the finite temperatureT
.0 at the timet=0. Since the critical temperature vanishes
for d=1, the final correlation lengthjeq is finite and equilib-
rium is reached in a finite timeteq,jeq

z , wherez is the dy-
namic exponent. For deep quenchesteq is large and, after a
characteristic timetsc, a well defined nonequilibrium scaling
regime sets in fortsc, t,teq, characterized by the growth of
the domains with a typical sizeLstd, t1/z. We study the scal-
ing properties of the response functionRst ,t8d when botht
and t8 belong to the scaling regime.

A. Nonconserved dynamics

The linear response function in the model with single spin
flip dynamics has been computed analyticallyf8–10g. This
case, therefore, is useful as a test for the accuracy of the
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algorithm. In the aging regimet8ø tøteq the autoresponse
function Rst ,t8d is given byf9g

TRst,t8d = e−st−t8dI0st − t8de−2t8fI0s2t8d + I1s2t8dg, s36d

whereInsxd are the modified Bessel functions.
In order to improve the signal to noise ratio, we have

extractedRst ,t8d from the integrated autoresponse function
xst ,ft8+d ,t8gd by choosingd in the following way. Expand-
ing for smalld we have

xst,ft8 + d,t8gd
d

. Rst,t8d +
d

2

]Rst,t8d
]t8

, s37d

then, for a given level of accuracy,Rst ,t8d can be obtained
from xst ,ft8+d ,t8gd /d if d is chosen appropriately small.
Notice that, assuming scalingRst ,t8d= t−sa+1dfst8 / td, from Eq.
s37d one has that, for a given value ofx= t8 / t, the second
term on the RHS produces a relative correction
DRst ,t8d /Rst ,t8d=s1/2dff8sxd / fsxdgsd / td of orderd / t. In our
simulations we have chosend=1 and, since the simulated
times aretù100, we have alwaysd / tø10−2. In the follow-
ing it is understood that all numerical results forRst ,t8d are
obtained in this way.

In Fig. 1 we compare the numerical results obtained by
means of the algorithms32d, for three different values oft8,
with the exact solutions36d. We have also plotted the data
obtained using the algorithms33d of Ricci-Tersenghif3g,
finding an excellent agreement between the curves generated
by the different algorithms and the analytical expression
s36d.

The physical meaning of the exact solution can be under-
stood by replacing Eq.s36d with the simple interpolating
formula

TRst,t8d = Azt8
−1/zst − t8 + t0d1/z−1 s38d

obtained by replacing the Bessel functions with the dominant
term in the asymptotic expansion and by insertingt0 as a
regularization ofRst ,t8d at equal times. For NCOPz=2. With

A2=1/sÎ2pd and t0=1/s2pd the simple algebraic forms38d
gives a very good approximation of the exact solution all
over the time domain, from short to large time separations.
Rewriting Eq.s38d as

TRst,t8d , Lst8d−1TRsingst − t8d, s39d

where

TRsingst − t8d = Azst − t8d1/z−1 s40d

the physical meaning becomes clear, sinceLst8d−1 is propor-
tional to the density of defectsrst8d at time t8, and Rsingst
− t8d can be interpreted as the response associated to a single
defect. In other words, Eq.s39d means that the total response
is given by the contribution of a single defect times the den-
sity of defects at the timet8. As a matter of fact, Eqs.s39d
ands40d are the particular realization of a general pattern for
the aging part of the response functionf11g

Rst,t8d , Lst8d−1Rsingst − t8dfst/t8d. s41d

The presence of the scaling functionfst / t8d in Eq. s41d for
d.1 can be explained as follows: ind=1 interfaces are
pointlike and the interaction between them always produces
annihilation. This is accounted for by the defect density
Lst8d−1, so fst / t8d;1. In higher dimension, however, defects
are extended objects whose interaction can produce a wealth
of different situations, which are globally described by a suit-
able scaling functionfst / t8d.

B. Conserved dynamics

The generality of the structure of Eqs.s39d ands40d may
soon be tested by looking at the response function in the
Ising chain with COP dynamics. While for NCOP the system
enters the scaling regime almost immediately, sincetsc.1,
for COP the timetsc for the onset of the scaling regime is of
the order of the characteristic timetev,exps4J/Td for the
separationsevaporationd of a spin from the boundary of a
domain. The equilibration time, instead, is given byteq
,exps10J/Td f12g. In order to have a large scaling regime,
namely, teq@ tsc, it is necessary to takeT/J!1, and to
choosetw. tsc. Simulations of the system in these conditions
are excessively time demanding with a conventional Monte
Carlo algorithm. Therefore we have resorted to the fast algo-
rithm of Bortz, Kalos, and Lebowitzf13g, which is much
more efficient at low temperatures. With a conventional al-
gorithm a number of attempts proportional totev is necessary
on average before the evaporation of a spin from a domain
occurs. Then, at low temperatures, a huge amount of at-
tempted moves are rejected, causing a very low efficiency.
The algorithm of Bortz, Kalos, and Lebowitz, instead, is re-
jection free: moves are always accepted and time is increased
proportionally to the inverse probability associated with
them. We stress that this is not an approximate kinetics, but a
clever implementation of the exact dynamics.

From the unperturbed system the response function is ex-
tracted through Eq.s32d, as in the case of NCOP. About the
choice ofd, for COP the simulated times aretù107 and we
can haved / tø10−2, as required for the correction term in

FIG. 1. Rst ,t8d in thed=1 Ising model with NCOP,T=0.3J, and
J=1. The number of spins isN=104, t8=100, 250, 500,sMCSd
from top to bottom. Data from different algorithms correspond to
different symbols. Continuous curves are the plots of Eq.s36d.
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Eq. s37d to be negligible, withd=105. We have performed
simulations withT=0.3J, corresponding totsc.63105 and
teq.331014. In these conditions the scaling regime is very
large. Actually, after a very narrow initial regime, where
single spins diffuse until they are adsorbed on an interface,
no evaporations occur and the system is frozen up to times of
ordertev. In this time regime the density of defectsrstd stays
constant, as shown in Fig. 2. Then, fort*tev, the
evaporation-condensation mechanism takes place and the
systems gradually enters the scaling regime. The range of
times explored for the computation of the response function
is shown in Fig. 2. This has been chosen as a compromise
between the necessity to go to the largest accessible times, in
order to work well inside the scaling regime, and to speed up
the simulation to have a good statistics. For COP, the obser-
vation of the asymptotic behaviorrstd, t1/z, with z=3, re-
quires very large timef14g. In the range of times explored for
the computation ofRst ,t8d the effective exponentzeff

=−fd ln rstd /d ln tg−1 has reached the valuezeff=3.44.
We have plotted in Fig. 3 the numerical data forRst ,t8d

together with the curves obtained from the analytical form
s38d, where we have substituted forz the above value ofzeff
and we have usedA3 and t0 as fitting parameters. The com-
parison is good and suggests that the physical interpretation,
behind the forms39d and s40d of the response function, ap-
plies also to thed=1 Ising model with spin exchange dynam-
ics f15g. We expect the more general forms41d to hold in
higher dimension with COP.

VI. RESPONSE FUNCTION OF THE D=2 ISING MODEL

As a further application of the numerical method, we
compute the zero field cooledsZFCd magnetizationxst ,twd
=xst ,ft ,twgd in the d=2 Ising model with NCOP, quenched
from the infinite temperature equilibrium state to a tempera-
ture belowTc. This quantity has already been measured both
by applying the perturbationf11,16–18g or by means of the

algorithm of Ricci-Tersenghif3g. In Fig. 4 we compare re-
sults obtained with our method and with that of Ricci-
Tersenghi, for several values oftw in the scaling regime. The
agreement between the two algorithms is excellent also in
this case. The equivalence of the two algorithms both ind
=1 and ind=2 suggests, recalling the discussion at the end
of Sec. IV, that different choices ofMsfsg ,fs8gd do not pro-
duce significant differences.

Let us comment on the behavior ofxst ,twd. As it is well
known, in the late stage of phase-ordering the interior of the
growing domains is equilibrated, while interfaces are out of
equilibrium. Then, a distinction can be made between bulk
and interface fluctuations. Accordingly, for the ZFC one has
f21–23g

xst,twd = xstst,twd + xagst,twd. s42d

Herexstst ,twd is the contribution from the bulk of domains,
which behaves as the equilibrium responsexeqst ,twd in the

FIG. 2. rstd in the d=1 Ising model with COP,T=0.3J and J
=1. The number of spins isN=104. The range of time used in the
simulations for the computation of the response function is in be-
tween the vertical lines. The dashed line represents the asymptotic
law rstd, t−1/3.

FIG. 3. Rst ,t8d in the d=1 Ising model with COP,T=0.3J and
J=1. The number of spins isN=104, t8=107, 2.53107, 53107

sMCSd from top to bottom. Continuous curves are the plots of Eqs.
s39d and s40d. Fitting parameters areA3=0.24, t0=53105.

FIG. 4. xst ,twd in the d=2 Ising model with NCOP,T=J=1.
The number of spins isN=16002, tw=13103, tw=1.53103, tw=2
3103, tw=2.53103, tw=33103, from top to bottom. Circles rep-
resent data obtained with the algorithm of Eq.s32d, continuous lines
are the results with the Ricci-Tersenghi methods33d.

LIPPIELLO, CORBERI, AND ZANNETTI PHYSICAL REVIEW E71, 036104s2005d

036104-6



ordered state at the temperatureT. This quantity, starting
from zero att= tw, saturates to the value 1−M2, M being the
equilibrium magnetization. The other term appearing in Eq.
s42d, namely, the additional aging contribution due to the
interfaces, is much less known. It is expected to scale as

xagst,twd = tw
−afS t

tw
D . s43d

In previous studiesf11,17,18g, an auxiliary dynamics,
which prevents flips in the bulk, was used in order to extract
the aging part of the response in Eq.s42d. Here, instead, we
have chosen a different technique to isolatexagst ,twd: We
compute the fullxst ,twd in the Glauber dynamics working at
a sufficiently low temperature wherexstst ,twd is negligible.
In fact, by choosingT=J, the asymptotic value ofxstst ,twd is
1−M2.0.0014, much smaller than the computed values of
xst ,twd in the range of times considered. Then one has
xst ,twd.xagst ,twd.

In addition to this difference, previous resultsf11,17,18g
on xagst ,twd were obtained with the usual method where a
perturbation is applied. The strengthh of the perturbation
must be chosen sufficiently small to work in the linear re-
gime. However, by reducingh the signal to noise ratio low-
ers, and the results get worst. Then one usually runs a series
of preliminary simulations in order to determine the largest
value of h compatible with the requisite of working in the
linear regime. While this point may be subtle, in the result
presented in this paper the limith→0 is taken analytically in
the derivation of the algorithm.

We have extracteda from the data of Fig. 4 by plotting
xst ,twd against tw with x= t / tw held fixed. The results are
shown on a double logarithmic plot in Fig. 5. According to
the scaling forms43d, for different values ofx the data must
align on straight lines with the same slopea. This is very
well compatible with the curves of Fig. 5, indicating that
scaling is obeyed. Computinga as the slope of these curves
we find a=0.26±0.01. This result agrees very well with the
value found in Refs.f11,17,18g. Once this exponent is

known, one obtains data collapse by plottingtw
axst ,twd

againstx, as shown in the inset of Fig. 5, confirming the
validity of the scaling forms43d.

VII. CONCLUDING REMARKS

In this paper we have derived a generalization of the FDT
out of equilibrium for systems of Ising spins, which takes
exactly the same form of the FDT generalization previously
derivedf1g for soft spins, evolving with Langevin dynamics.
We have shown that this fluctuation dissipation relation,
which reduces to the usual FDT when equilibrium is reached,
is obeyed in complete generality both by systems with COP
and NCOP. In addition to the theoretical interest, as a con-
tribution to the understanding of the FDT in the out of equi-
librium regime, our result is also promising as a convenient
tool for the computation of the linear response function in
numerical simulations without applying the perturbation,
along the lines of Refs.f2,3g. With standard methods, the
requirement to work in the linear regime, namely, with an
adequately small perturbation, sometimes is very subtle and
hard to be checked. This problem is avoided by this new
class of algorithms. Moreover, the statistical accuracy of the
results is, for comparable CPU times, much better because
simulations of perturbed systems usually require additional
statistical averages over realizations of thesrandomd pertur-
bation. We have demonstrated the high quality of the results
produced by our algorithm by computing the response func-
tion of the Ising model ind=1 and the integrated response
function in d=2. In d=2 our results agree with those ob-
tained with the algorithm of Ref.f3g and with previous simu-
lations performed applying the perturbation. We confirm that
xst ,twd obeys a scaling forms43d with a=0.26±0.01, in
agreement with previous determinationsf11,17,18g of this
exponent. Ind=1, for NCOP our results are in excellent
agreement with the exact analytical solution and with the
simulation made with the algorithm of Ref.f3g. In the case of
COP, where no analytical solution is available, we have ob-
tained results which substantiate the existence of the com-
mon structures39d ands40d of the response function for COP
and NCOP. These results show that the algorithm is efficient
enough to give access to the direct measurement of the im-
pulsive response functionRst ,t8d, which is too noisy to be
computed with standard methods. For this reason, previous
numerical studiesf11,16,19,20g have been necessarily di-
rected to the investigation of the integrated response func-
tions, such as the thermoremanent magnetization or the zero
field cooled magnetization, which are easier to compute.
However, as discussed in detail in Ref.f11g, it is quite a
delicate task to extract the properties ofRst ,t8d from those of
the integrated response functions. Therefore, the feasibility
of direct computations ofRst ,t8d is an important develop-
ment in the field, which is expected to solve a number of
problems still openf11g on the scaling behavior ofRst ,t8d for
d.1.
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APPENDIX A

Let us write the Langevin equation in the general form

]fsxW,td
]t

= si¹W dpfBsfsxW,tdd + hsxW,tdg + hsxW,td, sA1d

where hsxW ,td is the external field conjugated to the order
parameter,p=0 or p=2 for NCOP or COP, respectively, and
the noise correlator is given by

khsxW,tdhsxW8,t8dl = si¹W dp2TdsxW − xW8ddst − t8d. sA2d

Fourier transforming with respect to space, these become

]fskW,td
]t

= kpfBsffg,kW,td + hskW,tdg + hskW,td sA3d

and

khskW,tdhskW8,t8dl = 2Tkps2pdddskW + kW8ddst − t8d, sA4d

whereBsffg ,kW ,td is the Fourier transform ofB(fsxW ,td).
The linear response function is defined by

RskW,t,kW8,t8d = U dkfskW,tdlh

dhskW8,t8d
U

h=0

sA5d

with tù t8. Notice that, sincehskW ,td and kphskW ,td enter the
equation of motionsA3d in the same way, we have

K dfskW,td

dhskW8,t8d
L =

1

k8pU dkfskW,tdlh

dhskW8,t8d
U

h=0

, sA6d

wherek¯l denotes averages in absence of the external field.
Then, using the identityf24g

kfskW,tdhskW8,t8dl = 2Tk8pK dfskW,td

dhskW8,t8d
L , sA7d

we find

2TRskW,t,kW8,t8d = kfskW,tdhskW8,t8dl sA8d

or in real space

2TRsxW,t,xW8,t8d = kfsxW,tdhsxW8,t8dl sA9d

showing that Eq.s3d holds in the same form for NCOP and
COP.

APPENDIX B

The transition rates, with and without the external field,
satisfy the detailed balance conditions11d. Writing whsfsg
→ fs8gd=w0sfsg→ fs8gdDwsfsg→ fs8gd and Hhfsg=H0fsg
+DHfsg, from Eq. s11d follows

Dwsfsg → fs8gdexpF−
DHfsg

T
G

= Dwsfs8g → fsgdexpF−
DHfs8g

T
G . sB1d

Using DHfsg=−sjhj, Eq. sB1d is satisfied byDwsfsg→ fs8gd
=exph−f1/s2Tdghjssj −sj8dj up to a factorMsfsg ,fs8gd which
satisfiesMsfsg ,fs8gd=Msfs8g ,fsgd. Therefore, the most gen-
eral form of the perturbed transition rates, compatible with
detailed balance, is given by

Dwsfsg → fs8gd = expF−
1

2T
hjssj − sj8dGMsfsg,fs8gd.

sB2d

For h=0 the condition Dwsfsg→ fs8gd=1 implies
Msfsg ,fs8gd=1. Therefore, to linear order in the perturbation
one hasMsfsg ,fs8gd.1+Msfsg ,fs8gd. Inserting this result in
Eq. sB2d, and expanding also the exponential term, to linear
order inh/T one obtains Eq.s13d.
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